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Configuration spaces in cooperative

game theory and the topology

of embeddings into Euclidean spaces

Abstract: There is an interesting connection between the
configuration spaces arising in cooperative game theory with
the complexes arising as obstructions for embedding
(mapping) spaces into higher dimensional Euclidean spaces
without double (multiple) points. It turns out that objects like
threshold complexes and ‘simple games’ (von Neumann and
Morgenstern) are naturally linked with Kuratowski graphs,
Halin-Jung complexes, Tverberg-Van Kampen-Flores
obstructions, r-unavoidable complexes, etc.



Fundamental Problem

Definition: Suppose that r and d are positive integers. A
simplicial complex K is

almost r -non-embeddable
in Rd if and only if for each continuous map F : K → Rd

there exist disjoint faces ∆1, . . . ,∆r in K such that,

F (∆1) ∩ · · · ∩ F (∆r ) 6= ∅

Problem: Let r and d be positive integers.

1 Characterize the simplicial complexes which are almost
r -non-embeddable.

2 In particular find (interesting) sufficient conditions on K
which guarantee that it is almost r -non-embeddable.



Colored Tverberg Theorem (type B)
Given 5 red, 5 blue, and 5 white points in R3, it is always
possible to select 9 points (three in each color) and to form
three triangles ∆1,∆2,∆3 (with vertices of different color)
which have a non-empty intersection,

∆1 ∩∆2 ∩∆3 6= ∅ .
(S. Vrećica, R.Ž, J. Comb. Th. A, 1993.)



Examples

(K3,3 −→ R2)⇒ (2− intersection)

(K3,3,3
a−→ R2)⇒ (3− intersection)

(K5,5,5 −→ R3)⇒ (3− intersection)

(K4,4,4,4 −→ R3)⇒ (4− intersection)

(∆n+1 −→ Rn)⇒ (2− intersection)

(∆(r−1)(n+1) −→ Rn)⇒ (r − intersection)

(∆
(r−1)(n+2)

d r−1
r

ne −→ Rn)⇒ (r − intersection)



Radon’s theorem

(a)                               (b)                               (c)

Figure: In the planar case of Radon’s theorem the (2, 2)-partitions
are persistent, while (3, 1) are not.



Van Kampen-Flores theorem

Theorem: (Van Kampen-Flores 1930s) One can always find
two intersecting triangles in each collection of 7 points in
four-dimensional euclidean space.

More generally, for each collection C ⊂ R2d of cardinality
(2d + 3) there exist two disjoint sub-collections C1 and C2 of
size ≤ (d + 1) such that,

conv(C1) ∩ conv(C2) 6= ∅.
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Van Kampen-Flores theorem

non-linear version

Theorem: For each continuous map,

f : ∆N → R2d

where N = 2d + 2 and ∆N is an N-dimensional simplex, there
exist two disjoint faces σ1 and σ2 of ∆N such that
dim(σi) ≤ d and

f (σ1) ∩ f (σ2) 6= ∅.



Balanced generalized van

Kampen-Flores theorem
Theorem A: Let r ≥ 2 be a prime power, d ≥ 1,
N ≥ (r − 1)(d + 2), and rk + s ≥ (r − 1)d for integers k ≥ 0
and 0 ≤ s < r . Then for every continuous map f : ∆N → Rd ,
there are r pairwise disjoint faces σ1, . . . , σr of ∆N such that
f (σ1) ∩ · · · ∩ f (σr ) 6= ∅, with dim σi ≤ k + 1 for 1 ≤ i ≤ s
and dim σi ≤ k for s < i ≤ r .

D. Jojić, S.T. Vrećica, R.T. Živaljević.

Symmetric multiple chessboard complexes and a new theorem of

Tverberg type, J. Algebraic Combin., 46 (2017), 15–31.

The theorem confirms the conjecture of Blagojević, Frick, and Ziegler (Conjecture 6.6
in, Tverberg plus constraints, Bull. London Math. Soc., 46 (2014) 953–967.)

[BFZ14]
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Symmetric multiple chessboard complexes and a new theorem of

Tverberg type, J. Algebraic Combin., 46 (2017), 15–31.

The theorem confirms the conjecture of Blagojević, Frick, and Ziegler (Conjecture 6.6
in, Tverberg plus constraints, Bull. London Math. Soc., 46 (2014) 953–967.)

[BFZ14]



1 The condition,
rk + s ≥ (r − 1)d

is necessary. It is equivalent to the condition that if
σ1 ∩ · · · ∩ σr 6= ∅ in Rd then,

dim(σ1) + · · ·+ dim(σr ) ≥ (r − 1)d .

2 The condition
N ≥ (r − 1)(d + 2)

is also tight in light of Sarkaria’s “type B” example
(named after Karambir Sarkaria).



Consequences
(1) Implies positive answer to the ‘balanced case’ of the

problem whether each admissible r -tuple is Tverberg
prescribable, ([BFZ14], Question 6.9];

(2) The classical van Kampen-Flores theorem is obtained if d
is even, r = 2, s = 0, and k = d

2
;

(3) The sharpened van Kampen-Flores theorem ([BFZ14],
Theorem 6.8) corresponds to the case when d is odd,
r = 2, s = 1, and k = bd

2
c;

(4) The case d = 3 of the ‘sharpened van Kampen-Flores
theorem’ is equivalent to the Conway-Gordon-Sachs
theorem which says that the complete graph K6 on 6
vertices is ‘intrinsically linked’;

(5) The generalized van Kampen-Flores theorem ([BFZ14],
Theorem 6.3), which improves upon earlier results of
Sarkaria and Volovikov, follows for s = 0 and k = d r−1

r
de.
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Decidable simple games

A simple game I ⊂ 2[n] is a decidable simple game if

For each A ⊂ [n] (A ∈ I or Ac ∈ I)

A simple game I ⊂ 2[n] is a non-contradictory if

For each A ⊂ [n] (A /∈ I or Ac /∈ I)

Observation: Let I be a simple game and let K = 2[n] \ I be
the associated (complementary) simplicial complex. Then I is
both decidable and non-contradictory if and only if K is an
Alexander self dual complex.
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Weighted voting games

[q : w1,w2, . . . ,wn]

S ⊂ {1, 2, . . . , n}

is a winning (losing) coalition if and only if∑
i∈S

wi > q (
∑
i∈S

wi ≤ q)

Simple majority game: q = 1/2(w) = 1/2(w1 + · · ·+ wn).

Definition: Threshold complex associated to the voting
game [q : w1,w2, . . . ,wn] is the complex of all losing coalitions.



r -unavoidable complexes

Definition: Let r ≥ 2 be an integer. Suppose that K ⊂ 2S is
a simplicial complex with vertices in S . We say that K is
r -unavoidable on S if,

∀A1, . . . ,Ar ∈ 2S , A1 ] . . . ] Ar = S ⇒ (∃i)Ai ∈ K .

P.V.M. Blagojević, F. Frick, G.M. Ziegler. Tverberg plus
constraints. B. London Math. Soc., 46:953–967, 2014.
(‘Tverberg unavoidable complexes’)

[JVZ-3] M. Jelić, D. Jojić, M. Timotijević, S.T. Vrećica,
R.T. Živaljević. Topology and combinatorics of unavoidable
complexes. arXiv:1612.09487 [math.CO].
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Invariant π(K )

Definition: The partition number π(K ) of a simplicial
complex K ⊆ 2S is the minimum integer ν such that for each
partition (disjoint decomposition) A1 ] . . . ] Aν = S of S at
least one of the sets Ai is in K .

By definition the complex K ⊂ 2S is r -unavoidable if
π(K ) ≤ r .

Observation: Let

Tw≤1/r := {A ⊂ S | w(S) =
∑
i∈A

wi ≤ 1/r}

be the threshold complex associated with the weighted
majority game [1/r : w1, . . . ,wn] where w1 + · · ·+ wn = 1.
Then the complex Tw≤1/r is r -unavoidable.
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Collective r -unavoidable complexes
(D. Jojić, I. Nekrasov, G. Panina, R. Živaljević)

1 Alexander r -tuples K = 〈Ki〉ri=1 of simplicial complexes,
as a common generalization of pairs of Alexander dual
complexes (Alexander 2-tuples) and r -unavoidable
complexes.

2 Bier complexes, defined as the deleted joins K∗∆ of
Alexander r -tuples, include both standard Bier spheres
and optimal multiple chessboard complexes as interesting,
special cases.

3 (main results)
• the r -fold deleted join of Alexander r -tuple is a pure

complex homotopy equivalent to a wedge of spheres,
• the r -fold deleted join of a collectively unavoidable
r -tuple is (n − r − 1)-connected,

• classification theorem for Alexander r -tuples and Bier
complexes.
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Theorem A ([JMVZ]) Let K ⊂ 2[m] be a simplicial complex.
Suppose that r = π(K ) = pk is a prime power and let
G = (Zp)k . Then,

IndG (K ∗r∆ ) ≥ m − π(K ). (1)

where
IndG (K ) := γG (K )− 1 (2)

The G -genus γG (K ) of K is defined as the smallest number k such
that here exists a G equivariant map

φ : K → G/H1 ∗ · · · ∗ G/Hk

where Hi ( G is a proper subgroup of G .

[JMVZ] D. Jojić, W. Marzantowicz, S.T. Vrećica, R.T. Živaljević.

Topology of unavoidable complexes, arXiv:1603.08472 [math.AT].
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Proof methods and ideas

•

∆m1,...,mr ;1
n,r

∼=
(

[n]

6 m1

)
∗∆ · · · ∗∆

(
[n]

6 mr

)
,

Multiple chessboard complex as the deleted join of
skeletons of the simplex ∆([n]) ∼= ∆n−1.

•
Σ(K∗r∆ ) :=

⋃
π∈Sr

Kπ(1) ∗∆ · · · ∗∆ Kπ(r) ⊂ [r ]∗n

Symmetrized deleted join of a collection K = 〈K1, . . . ,Kr〉
of simplicial complexes Ki ⊂ 2[n] = ∆([n]).



Theorem: ([JVZ-2]) Suppose that,

Σ = Σm1,...,ms ,ms+1,...,mr ;1
n,r = Σν+1,...,ν+1,ν,...,ν;1

n,r

is the symmetric multiple chessboard complex obtained by the
Sr -symmetrization of the multiple chessboard complex
K1 = ∆ν+1,...,ν+1,ν,...,ν;1

n,r where m1 = . . . = ms = ν + 1 and
ms+1 = . . . = mr = ν. Assume that the following inequality is
satisfied,

n ≥ r(ν + 1) + s − 1.

Then the complex Σ is µ-connected where,

µ = m1 + · · ·+ mr − 2 = νr + s − 2



∆m1,...,mr ;1
n,r

∼=
(

[n]

6 m1

)
∗∆ · · · ∗∆

(
[n]

6 mr

)
Σ(∆m1,...,mr ;1

n,r ) =: Σm1,...,mr ;1
n,r

Σ = Σk1,...,ks ,ks+1,...,kn;1
m,n = Σν+1,...,ν+1,ν,...,ν;1

m,n

where k1 = . . . = ks = ν + 1 and ks+1 = . . . = kn = ν, is
(dim(Σ)− 1)-connected.

Proposition: There does not exist a G -equivariant map,

Σν+1,...,ν+1,ν,...,ν;1
m,n

G−→ (Rd)∗r/Rd

where G = (Zp)α and r = pα.



Direct and indirect methods

(1) The ‘direct methods’ rely on a variant of equivariant
obstruction theory and can be classified as:

(1a) the methods which use the high connectivity of the
configuration space;

(1b) the methods involving a direct calculation of the
obstruction.

(2) The ‘indirect methods’ comprise two basic form of
reductions:

(2a) the ‘constraint method’ or the
Gromov-Blagojević-Frick-Ziegler reduction;

(2b) the methods based on ‘Sarkaria’s index inequality’ and
its relatives.

(3) Ideas and tools from linear programming, polyhedral
combinatorics, and cooperative game theory.



Constraint method

Constraint method or the Gromov-Blagojević-Frick-Ziegler
reduction ⇒ unavoidable complexes.

K
f−−−→ Rd

e

y i

y
L

F−−−→ Rd+1



Sarkaria’s index inequality

K ∗r∆
f̂−−−→ (Rd)∗r/Rd

ē

y i

y
L∗r∆

F−−−→ (RD)∗r/RD

IndG (L) ≥ IndG (L0)− IndG (∆(L0 \ L))− 1

(R. Ž. User’s guide to equivariant methods in combinatorics, I and II.

Publ. Inst. Math. (Beograd) (N.S.), (I) 59(73), 1996 and (II) 64(78), 1998.)
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Theorem B [JMVZ] Suppose that r = pk is a prime power
and let m1, . . . ,ms be a collection of natural numbers. Let,

K = K1 ∗ . . . ∗ Ks

be the join of a collection {Ki}si=1 of simplicial complexes
where each complex Ki is r -unavoidable on [mi ]. Then K is
almost r -non-embeddable in Rd if the dimension d satisfies
the inequality,

(r − 1)(d + s + 1) + 1 ≤ m1 + . . . + ms . (3)

[JMVZ] D. Jojić, W. Marzantowicz, S.T. Vrećica, R.T. Živaljević.

Topology of unavoidable complexes, arXiv:1603.08472 [math.AT].
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Unavoidable vs. Non-embeddable

Definition: Let r ≥ 2 be an integer. We say that a simplicial
complex K ⊂ 2S is r -unavoidable if,

∀A1, . . . ,Ar ∈ 2S , A1 ] . . . ] Ar = S ⇒ (∃i)Ai ∈ K .

Definition: A simplicial complex K is
almost r -non-embeddable

in Rd if and only if for each continuous map F : K → Rd

there exist vertex disjoint faces ∆1, . . . ,∆r in K such that,

F (∆1) ∩ · · · ∩ F (∆r ) 6= ∅



Van Kampen-Flores,

Grünbaum, Schild

non-embedding theorem

Theorem: (G. Schild ’93, B. Grünbaum ’69) Let
K = K1 ∗ . . . ∗ Ks where each Ki is a self-dual subcomplex of
the simplex ∆mi−1 = ∆([mi ]) spanned by mi vertices. Then K
is not embeddable in Rd where,

d ≤ m1 + . . . + ms − s − 2. (4)

self-dual = minimal 2-unavoidable
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Minimal, non-simple, r -unavoidable!
Theorem C: Suppose that Xi (for i = 1, . . . , r − 1) is either
the 6-element triangulation of RP2 or the 9-element
triangulation of CP2. Then the complex,

X1 ∗ X2 ∗ · · · ∗ Xr−1

is an example of a minimal, non-simple, r -unavoidable
simplicial complex.
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Threshold complexes

[q : w1,w2, . . . ,wn]

S ⊂ {1, 2, . . . , n}

is a winning (losing) coalition if and only if∑
i∈S

wi > q (
∑
i∈S

wi ≤ q)

Definition: Threshold complex associated to the voting
game [q : w1,w2, . . . ,wn] is the complex of all losing coalitions.



Threshold complexes

= weighted voting systems

[11 : 12, 5, 4]

The player with weight 12 is a ‘dictator’.

[30 : 10, 10, 10, 9]

The player with weight 9 has no real power
(his/her vote is irrelevant)

[39 : 7, 7, 7, 7, 7, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]

The ‘voting power’ distribution in UN Security Council.



r -unavoidable threshold complexes

µ = (w1,w2, . . . ,wn)

µ ∈ (R+)n defines a measure on [n] = {1, 2, . . . , n}

Proposition: Suppose that the total weight (mass) is,

µ([n]) = w1 + w2 + · · ·+ wn = w .

Then the threshold complex,

Tµ≤w/r := {S ⊂ [n] | µ(S) ≤ w/r}

is r -unavoidable.

Proof: If [n] = A1 ] · · · ] Ar then µ(Ai) ≤ w/r for some i .



Theorem B revisited

Theorem B: Suppose that r = pk is a prime power and let
m1, . . . ,ms be a collection of natural numbers. Let,

K = K1 ∗ . . . ∗ Ks

be the join of a collection {Ki}si=1 of simplicial complexes
where each complex Ki is r -unavoidable on [mi ]. Then K is
almost r -non-embeddable in Rd if the dimension d satisfies
the inequality,

(r − 1)(d + s + 1) + 1 ≤ m1 + . . . + ms . (5)



Generating r -non-embeddable complexes

[q;w1,w2, . . . ,wm]

1 Choose r , quota q = 1/r and the number m = m1 of
players;

2 Choose weights w1, . . . ,wm1 ,

3 Record the asociated r -unavoidable threshold complex K1.

4 Repeat the procedure s ≥ 1 times, possibly changing the
number of players (and the corresponding weights);

5 The associated complexes are Ki ⊂ 2[mi ]

6 Let K = K1 ∗ · · · ∗ Ks be the associated join.

7 Find d from the equation,

(r − 1)(d + s + 1) + 1 = m1 + · · ·+ ms

Then, K is almost r -non-embeddable in Rd .



3-non-embeddablity of K5,5,5

[1.5; 1, 1, 1, 1, 1] 3 groups of players r = 3 K5,5,5 = [5]∗[5]∗[5]

(Type B Colored Tverberg Thm., S. Vrećica, R.Ž (1993))



Van Kampen-Flores Theorem

r = 2 q = (2n + 1)/2

one group of (2n+1) players

[(2q + 1)/2; 1, 1, . . . , 1]

The complex K of all losing coalitions is identified as the
(n − 1)-dimensional skeleton ∆

(n−1)
2n of the (2n)-dimensional

simplex.

Conclusion: ∆
(n−1)
2n is not embeddable in R2n.



The 6-element triangulation RP2
6 of the real projective plane

(hemi-icosahedron), behaves like the collection of all losing
coalitions on a set of 6 players, with quota q = 1/2.

4

6

5

1

1

3

3

2

2

The conclusion is that RP2 is not embeddable in R3.



Simple vs. non-simple

r -unavoidable complexes

Definition: An r -unavoidable simplicial complex K ⊂ 2[n] is
simple if it dominates an r -unavoidable threshold complex in
the sense that,

Tµ≤1/r ⊆ K

for some probability measure µ ∈ (R+)n.

In the opposite case we say that K is non-simple.

Problem: Find interesting examples of non-simple
r -unavoidable complexes.
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Threshold characteristic ρ(K )

The threshold characteristic ρ(K ) is the maximum real
number α ≥ 0 such that for some probability measure µ on
[n], the associated ‘threshold complex’
Tµ<α := {A ⊂ [n] | µ(A) < α} is contained in K .

ρ(K ) = sup{α ∈ [0,+∞] | (∃µ ∈ ∆n−1) Tµ≤α ⊂ K} (6)

= max{α ∈ [0,+∞] | (∃µ ∈ ∆n−1) Tµ<α ⊂ K} . (7)
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Fundamental inequality

π(K ) ≤ b1/ρ(K )c+ 1

Moreover, K is simple if and only if π(K ) = b1/ρ(K )c+ 1.

(Recall that by definition if π(K ) = r then K is simple if and
only if it contains a linear r -unavoidable complex Tµ≤1/r .)

The problem of finding non-simple r -unavoidable complexes is
reduced to finding examples such that

ε(K ) := b1/ρ(K )c+ 1− π(K ) > 0
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Calculations

Proposition: If K ⊆ 2[n] then,

ρ(K ) = max
µ∈∆n−1

min
C /∈K

µ(C ) . (8)

Proposition: Let G be a group of all permutations of [n] that
keep the complex K invariant. Let ∆G

n−1 ⊂ ∆n−1 be the
closed, convex set of all G -invariant probability measures.
Then,

ρ(K ) = max
µ∈∆G

n−1

min
C /∈K

µ(C ) . (9)

Proposition: If the action of G is transitive then,

ρ(K ) = min {|C |/n | C /∈ K} . (10)



Examples of non-simple

r -unavoidable complexes
Proposition: The join RP2

6 ∗RP2
6 of two minimal (six vertex)

triangulations of projective planes is a 3-unavoidable complex
on the set [6] ] [6] ∼= [12], which is non-simple, i.e. it does not
dominate a realizable 3-unavoidable simplicial complex Kµ≤1/3.

,,

,

,

,

,

,
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Remark: If K ⊂ 2[n] is a 2-unavoidable simplicial complex
then K ∗ K is 3-unavoidable on [n] ] [n] ∼= [2n]. Proposition is
true for any 2-unavoidable simplicial complex K which has a
‘large’ group of symmetries.

(This includes the minimal triangulation K of the complex
projective plane CP2, etc.)
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New unavoidable complexes from old

Definition:((r , s)-unavoidable complexes) Choose integers
r > s ≥ 1. A simplicial complex K is (r , s)-unavoidable if,

A1 ] . . . ] Ar = [m] ⇒ |K ∩ {Ai}ri=1| ≥ s.

In other words K is (r , s)-unavoidable if for each partition
]ri=1 Ai = [m] of [m] into r non-empty sets, at least s of the
sets Ai belong to K .

r -unavoidable⇔ (r , 1)-unavoidable
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Proposition: K ⊂ 2[k] is r -unavoidable if and only if it is
(r + k − 1, k)-unavoidable for some k ≥ 1.

Proof: (⇐)
If A1 ] . . . ] Ar = [n] let A1 ] · · · ] Ar ] ∅ · · · ] ∅ = [n] be a
new partition of size r + k − 1.

(⇒)
If A1 ] . . . ] Ar+k−1 = [n] let B1 ] · · · ] Br = [n] be a new
partition of size r where Bi = Ai for 1 ≤ i ≤ r − 1 and
Br = ∪j≥r Aj , etc. �
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Proposition: Suppose that K ⊂ 2S and L ⊂ 2T are simplicial
complexes on disjoint sets S and T . Assume that K is
s-unavoidable on S and L is (r , s)-unavoidable on T . Then
the join K ∗ L, interpreted as a subcomplex of 2S∪T , is
r -unavoidable.

Proof: Let C1 ] · · · ] Cr = S ∪ T where Ci = Ai ∪ Bi ,
A1 ] · · · ] Ar = S and B1 ] · · · ] Br = T .

Since L is (r , s)-unavoidable on T there exist distinct indices
{ik}sk=1 such that Bik ∈ L for each k . Since K is s-unavoidable
there exists k such that Aik ∈ K and as a consequence
Cik = Aik ∪ Bik ∈ K ∗ L. �
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Corollary: Suppose that K ⊂ 2S and L ⊂ 2T are simplicial
complexes on disjoint sets S and T . Assume that K is
2-unavoidable on S and L is (r − 1)-unavoidable on T . Then
the join K ∗ L is r -unavoidable on S ∪ T .

Corollary: If K is a self-dual (minimal 2-unavoidable)
subcomplex of 2S then K ∗ · · · ∗ K = K ∗r−1 is an
r -unavoidable complex on S × [r ].
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Minimal, non-simple, r -unavoidable!
Theorem: Suppose that Xi (for i = 1, . . . , r − 1) is either the
6-element triangulation of RP2 or the 9-element triangulation
of CP2. Then the complex,

X1 ∗ X2 ∗ · · · ∗ Xr−1

is an example of a minimal, non-simple, r -unavoidable
simplicial complex.
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Other properties of L = RP2 ∗ RP2

Let,
L∗3∆
∼= L∗3∆

∼= (RP2)∗3∆ ∗ (RP2)∗3∆

be the 3-fold deleted join of L. Then,

1 dim(L∗3∆ ) = 11

2

IndZ3(L∗3∆ ) ≥ 9

3 The complex L∗3∆ is 8-connected.

4 There does not exist a Z3-equivariant map, f : L∗3∆ → X ,
for each free, Z3-complex X of dimension ≤ 8.
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Key examples from [BFZ]

Example: (The key example (iv) from [BFZ])
If r(k + 1) + s > N + 1 with 0 ≤ s ≤ r , then the complex

K = ∆
(k−1)
N ∪∆

(k)
N−(r−s) =

(
[N + 1]

≤ k

)
∪
(

[N + 1− (r − s)]

≤ k + 1

)
⊂ 2[N+1] ,

is r -unavoidable on [N + 1].

Proposition [JJTVZ] The complex K = ∆
(k−1)
N ∪∆

(k)
N−(r−s) is

intrinsically linear, r -unavoidable complex.

Proof:

By solving a linear program evaluating (estimating)
ρ(K ) for the complex K =

(
[n]
≤k

)
∪
(

[p]
≤k+1

)
.
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K [3] RP2
6 CP2

9 HP2
15 R3

π(K ∗n) n + 1 n + 1 n + 1 n + 1 n + 1
ρ(K ∗n) 2/3n 1/2n 4/9n 6/15n ≤ 6/15n
ε(K ∗n) bn/2c n b5n/4c b3n/2c ?
ν(K ∗n) 3n 6n 9n 15n 15n
ε/ν ≈ 1/6 1/6 ≈ 5/36 ≈ 1/10 ?

(11)



The complex R3
Example: Let R3 be the the complex of all graphs Γ ⊂ K6

such that the complement Γc = V \ Γ contains a triangle K3.
Then,

π(R3) = 2 ρ(R3) = 6/15 ν(R3) = 15. (12)

Proof:

ρ(R3) = min{|A|/15 | A /∈ R3}. (13)

1 1

2 2

3 3

4 4

5 5

6 6

Figure: A maximal graph without triangles and its complement.
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