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On applications of Algebraic topology

• The applicability of the results and methods of Algebraic
topology throughout the Mathematics is its crucial and
one of the most significant properties.

• The early examples include the fundamental theorem of
algebra, Brouwer’s fixed point theorem and the domain
invariance theorem; the ham-sandwich theorem.

• There are now many applications in other areas of
Mathematics and sciences in general (the shape
recognition, topological robotics, motion planning
algorithms, topological complexity, topological data
analysis, topological analysis of neural networks).
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On applications of Algebraic topology

• Some of the applications were quite unexpected, such as
Lovász proof of Kneser conjecture, saying that the
chromatic number of Kneser graph (with vertices(

[2n+k]
n

)
) Kn,k equals k + 2.

• Theorem. (D. Gale) If C is a compact convex set in Rd

of the width w and C ′ is the image of the injective,
continuous Lipschitz mapping (with Lipschitz constant L)
f : C → Rd , then the width of the set C ′ is at most Lw .

• Both results depend on topological methods, in particular
Borsuk-Ulam theorem.
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Borsuk-Ulam theorem

• Borsuk-Ulam theorem is one of the most often used
topological results.

• It has several equivalent formulations and relatives and
many consequences.

• There is no antipodal (Z/2-equivariant) mapping
Sn+1 → Sn, or X → Y if Y is n-dimensional and X is
n-connected and the action is free.
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On applications of Algebraic topology

• Theorem. (R. Živaljević, S. V., 1990) For every
collection µ1, ..., µk of probability measures on Rd , there
is a (k − 1)-dimensional flat F so that every half-space
H+ containing F satisfies µi(H+) ≥ 1

d−k+2
for every

i = 1, ..., k .

• The special case k = 1 reduces to the well-known Rado’s
center point theorem, and the special case k = d reduces
to the ham-sandwich theorem.
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On applications of Algebraic topology

• The proof uses determination of certain Stiefel-Whitney
characteristic classes in the cohomology ring of the
Grassmann manifold.

• For the polynomials in the variables x1, ..., xn, y1, ..., yk the
ideal generated by the symmetric polynomials in all n + k
variables does not contain the monomial (x1x2 · · · xn)k .
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Chessboard complex ∆m,n

• vertices of ∆m,n: squares in a chessboard which has n
rows and m columns,

• simplices of ∆m,n: non-taking rooks placements, i.e. at
most one vertex from each row and each column,

• The first examples: ∆3,2 is a hexagon, ∆4,3 is a torus.



Chessboard complex ∆m,n

• vertices of ∆m,n: squares in a chessboard which has n
rows and m columns,

• simplices of ∆m,n: non-taking rooks placements, i.e. at
most one vertex from each row and each column,

• The first examples: ∆3,2 is a hexagon, ∆4,3 is a torus.



Chessboard complex ∆m,n

• vertices of ∆m,n: squares in a chessboard which has n
rows and m columns,

• simplices of ∆m,n: non-taking rooks placements, i.e. at
most one vertex from each row and each column,

• The first examples: ∆3,2 is a hexagon, ∆4,3 is a torus.



The first examples

Figure: ∆3,2 is a hexagon
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Figure: ∆4,3 is a torus



The first examples

Figure: ∆4,3 is a torus



The first examples

Figure: ∆4,3 is a torus



Chessboard complexes appear as...

coset complex of certain subgroups in the symmetric group

∆m,n = ∆(Sm,Hn)

matching complex in a complete bipartite graph

∆m,n = M(Km,n)

n-fold 2-deleted join of vertices of the (m − 1)-simplex

∆m,n = [m]∗n∆(2) =
(
(σm−1)(0)

)∗n
∆(2)

=
(
[1]∗m∆(2)

)∗n
∆(2)
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Properties of chessboard complexes are

important!

• Colored Tverberg theorem. (R. Živaljević, S. V.,
1992) For r prime and any d + 1 collections (colors) of
finite sets of 2r − 1 points each in Rd , there are r disjoint
sets each containing at most one point of every color so
that their convex hulls intersect.

• If such r sets do not exist, we have the mapping from the
configuration space of joins of r -tuples of disjoint simpli-
ces to the join of r copies of Rd missing the diagonal.

• Simplices with one vertex of each color [2r − 1]∗(d+1).

• Collections of r vertex-disjoint simplices with at most one
vertex of each color could be described as(
[2r − 1]∗(d+1)

)∗r
∆

= ([2r − 1]∗r∆ )∗(d+1) = (∆r ,2r−1)∗(d+1).
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1992) For r prime and any d + 1 collections (colors) of
finite sets of 2r − 1 points each in Rd , there are r disjoint
sets each containing at most one point of every color so
that their convex hulls intersect.

• If such r sets do not exist, we have the mapping from the
configuration space of joins of r -tuples of disjoint simpli-
ces to the join of r copies of Rd missing the diagonal.

• Simplices with one vertex of each color [2r − 1]∗(d+1).

• Collections of r vertex-disjoint simplices with at most one
vertex of each color could be described as(
[2r − 1]∗(d+1)

)∗r
∆

= ([2r − 1]∗r∆ )∗(d+1) = (∆r ,2r−1)∗(d+1).



Properties of chessboard complexes are

important!

• Colored Tverberg theorem. (R. Živaljević, S. V.,
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Properties of chessboard complexes are

important!

• ∆m,r is (r − 2)-connected for m ≥ 2r − 1.

• The first non-zero homology class of (∆r ,2r−1)∗(d+1) is of
dimension at least (r − 1)(d + 1) + d = r(d + 1)− 1, and
so it is (r(d + 1)− 2)-connected.

•
(
Rd
)∗r

∆
' Rrd+r−1\Rd ' Rrd+r−d−1\{0} ' S (r−1)(d+1)−1.

• For a prime r there is no Zr -map
(∆r ,2r−1)∗(d+1) →

(
Rd
)∗r

∆
.
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Properties of chessboard complexes are

important!

• The colored Tverberg theorem was used to establish the
halving plane theorem, the point selection theorem, the
hitting set theorem, the weak ε-net theorem. (N. Alon, I.
Bárány, Z. Füredi, D. Kleitman, L. Lovász)

• This result is improved by P. Blagojević, B. Matschke, G.
Ziegler in 2009. by proving that r points of each color is
sufficient when r + 1 is prime, establishing in this way the
original conjecture by I. Bárány and D. Larman in this
special case.
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Properties of chessboard complexes are

important!

• The same year we (S. V., R. Živaljević) gave a simpler
proof of this theorem, based on the fact that ∆r ,r−1 is an
orientable pseudomanifold.

• Theorem. (S. V., R. Živaljević, 2009) The degree of
each Z/r -equivariant map f : (∆r ,r−1)∗d → S(W⊕d

r )
satisfies deg(f ) ≡mod r (−1)d , provided r is a prime
number.
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Some generalizations

• A. Björner, L. Lovász, S. V., R. Živaljević proved in 1994
the general lower bound on the connectivity of chessboard
complexes and also for some of their generalizations
(obtained from higher-dimensional chessboards, matching
complexes of complete multipartite hypergraphs etc.).
Some other properties and invariants of these complexes
were considered.

• It was later proved that these estimates are sharp. (J.
Shareshian, M. Wachs)
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Some generalizations

• We (S. V., R. Živaljević, 1994) established a new version
of Colored Tverberg theorem (where the number of colors
needed not to be d + 1) and showed that in this case the
result was optimal.

• For every constellation of five red, five blue and five white
stars in the space, there exist three vertex disjoint
triangles formed by stars of different colors which have a
nonempty intersection.
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Symmetric homology of algebras

• Considering the symmetric analogue of the cyclic
homology of algebras, S. Ault, Z. Fiedorowicz wanted to
show that there was a spectral sequence converging
strongly to HS∗(A) with the E 1-term

E 1
p,q =

⊕
u∈X p+1/Sp+1

H̃p+q(EGu nGu
NSp/NS ′p ; k).

• The fact that the connectivity of the space NSp/NS ′p is
an increasing function of p is crucial to show this
convergence.
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Cycle-free chessboard complexes

• They considered another complex Sym
(p)
∗ to compute the

homology of NSp/NS ′p.

• We (S. V., R. Živaljević, 2009) showed this complex to be
a suspension of a subcomplex Ωp+1 of the chessboard
complex ∆p+1 = ∆p+1,p+1.

• The subcomplex Ωp+1 is obtained from the chessboard
complex ∆p+1,p+1 by deleting the simplices of the form
((xσ(1), xσ(2)), (xσ(2), xσ(3)), ..., (xσ(k), xσ(1))) for any
k ∈ {1, ..., p + 1} and any permutation σ (cycles).

• We proved that Sym
(p)
∗ was

[
2
3
(p − 1)

]
-connected.
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Multiple chessboard complex ∆k1,...,kn;l1,...,lm
m,n

• vertices: squares in a chessboard which has n rows and
m columns,

• simplices: having at most ki vertices from the i -th row
and at most lj vertices from the j-th column for each i , j ,

Figure: ∆k1,...,km;l1,...,lm
m,n
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The important special case

• If k1 = · · · = kn = k and l1 = · · · = lm = l , we denote it
by ∆k;l

m,n.

• First, we treated the simpler case ∆k1,...,kn;1
m,n and ∆k;1

m,n, i.e.
the case l1 = · · · = lm = 1.

• The first examples:

∆2;1
3,2 ≈ S1 × D1, ∆2,1;1

4,2 ≈ S2, ∆2;1
5,2 ≈ S3.
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The new examples

Figure: ∆2,1
3,2 is a triangulation of cylinder



The new examples

Figure: ∆2,1;1
4,2
∼= S2



The new examples

∆2,1
5,2 ≈ S3

• link of a vertex in ∆2,1
5,2 is ∆2,1;1

4,2
∼= S2

• link of an edge in ∆2,1
5,2 is a circle

(old chessboard complex ∆3,2 or ∆2,1
3,1)

• link of a 2-simplex in ∆2,1
5,2 is a set of two points

• ∆2,1
5,2 is a 2-connected, simplicial 3-manifold.
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The appearances

• ∆k;l
m,n is a ”matching” complex of Km,n where each red

vertex is matched with at most k blue vertices, and each
blue vertex is matched with at most l red vertices.

• ∆k;l
m,n is n-fold (l + 1)-deleted join of the (k − 1)-skeleton

of the (m − 1)-simplex or n-fold (l + 1)-deleted join of
m-fold (k + 1)-deleted join of a point.

•
∆k;l

m,n =
(
(σm−1)(k−1)

)∗n
∆(l+1)

=
(
[1]∗m∆(k+1)

)∗n
∆(l+1)

• Establishing the topological properties of these complexes
was our main motivation.
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Topological properties

• Theorem. (D. Jojić, S. V., R. Živaljević, 2018) If
k1 + · · ·+ kn ≤ l1 + · · ·+ lm − n + 1, the multiple
chessboard complex ∆k1,...,kn;l1,...,lm

m,n is
(k1 + · · ·+ kn − 2)-connected.

• Corollary. By replacing rows and columns, we see that
if l1 + · · ·+ lm ≤ k1 + · · ·+ kn −m + 1, the same
complex is (l1 + · · ·+ lm − 2)-connected.
If k1 = · · · = kn = k and l1 = · · · = lm = l , we obtain the
chessboard complex ∆k;l

m,n, and it follows that this
complex is (kn − 2)-connected if kn ≤ lm − n + 1, and it
is (lm − 2)-connected if lm ≤ kn −m + 1.
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The applications - Van Kampen

• We could consider topological Tverberg theorem and
require the dimensions of faces of a simplex whose images
intersect to be prescribed.

• Van Kampen-Flores theorem is an example of the result
of this type, saying that for each continuous map
f : ∆N → R2d , where N = 2d + 2 and ∆N is an
N-dimensional simplex, there exist two disjoint faces σ1

and σ2 of ∆N such that dim(σi) ≤ d and
f (σ1) ∩ f (σ2) 6= ∅.
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Radon’s theorem

(a) (b) (c)

Figure: In the planar case of Radon’s theorem the (1, 1)-partitions
are persistent, while (2, 0) are not.



The applications - Van Kampen

• P. Blagojević, F. Frick and G. Ziegler raised a conjecture
that, under some hypothesis, there are r disjoint faces of
a simplex whose dimensions are two consecutive integers
and whose images intersect.

• Theorem. (D. Jojić, S. V., R. Živaljević, 2017) Let
r ≥ 2 be a prime power, d ≥ 1, N ≥ (r − 1)(d + 2), and
rk + s ≥ (r − 1)d for integers k ≥ 0 and 0 ≤ s < r .
Then for every continuous map f : ∆N → Rd , there are r
pairwise disjoint faces σ1, . . . , σr of ∆N such that
f (σ1) ∩ · · · ∩ f (σr ) 6= ∅, with dim σi ≤ k + 1 for
1 ≤ i ≤ s and dim σi ≤ k for s < i ≤ r .
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Symmetrized multiple chessboard complex

• The configuration space is a multiple chessboard complex
∆k+2,...,k+2,k+1,...,k+1;1

N+1,r , and is highly connected.

• In order to have a group action of permuting the rows, we
have to deal with a symmetrized multiple chessboard
complexes

Σk1,...,kr ;1
N+1,r = Sr ·∆k1,...,kr ;1

N+1,r =
⋃
σ∈Sr

∆
kσ(1),...,kσ(r);1

N+1,r ,

where k1, ..., kr = k + 2, ..., k + 2, k + 1, ..., k + 1.
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Symmetrized multiple chessboard complex

• If r = pα is a prime power, there is a fixed point free
action of the group (Z/p)α on the complex Σk1,...,kr ;1

m,r .

• If such r faces does not exist, we obtain equivariant
mapping of this complex to the representation sphere of
appropriate dimension.
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Consequences

(1) Implies positive answer to the ‘balanced case’ of the
problem whether each admissible r -tuple is Tverberg
prescribable,

(2) The classical van Kampen-Flores theorem is obtained if d
is even, r = 2, s = 0, and k = d

2
;

(3) The sharpened van Kampen-Flores theorem corresponds
to the case when d is odd, r = 2, s = 1, and k = bd

2
c;

(4) The case d = 3 of the ‘sharpened van Kampen-Flores
theorem’ is equivalent to the Conway-Gordon-Sachs
theorem which says that the complete graph K6 on 6
vertices is ‘intrinsically linked’;

(5) The generalized van Kampen-Flores theorem which
improves upon earlier results of Sarkaria and Volovikov,
follows for s = 0 and k = d r−1

r
de.
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The applications - Van Kampen

• We could also provide a new proof for a generalization
treating j-wise disjoint faces.

• Theorem. Let r be a prime power, and let
(k + 1)r + r − 1 ≤ (N + 1)(j − 1) and
(r − 1)(d + 1) + 1 ≤ r(k + 1). Then for every continuous
mapping from ∆N to Rd there are r j-wise disjoint faces
of the simplex ∆N of dimension at most k whose images
have nonempty intersection.
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The applications - colored Tverberg

• We could prove a colored Tverberg type theorem,
allowing more than 1 vertex of the same color in each
face, and we consider j-wise disjoint faces.

• Theorem. (D. Jojić, S. V., R. Živaljević, 2018) Let r be
a prime power. Given k finite sets of points in Rd (called
colors), of m points each, so that pr ≤ m(j − 1)− r + 1
and (r − 1)(d + 1) + 1 ≤ prk , it is possible to divide the
points in r j-wise disjoint sets containing at most p points
of each color, so that their convex hulls intersect.
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The applications - colored Tverberg

• Theorem. Let r be a prime power. Given k finite sets
of points in Rd (called colors), of m points each, so that
2m− 1 ≤ r and (r − 1)(d + 1) + 1 ≤ mk , it is possible to
divide the points in r pairwise disjoint sets containing at
most 1 point of each color, so that their convex hulls
intersect.

• It is easy to see that the assumptions on the total number
of points is the best possible, since the set of
(r − 1)(d + 1) points in the general position could not be
divided in r disjoint sets whose convex hulls intersect.
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R. Živaljević, S. Vrećica, The colored Tverberg’s problem and
complexes of injective functions, J. Combin. Theory Ser. A
61, 2, 1992, 309–318.



THANK YOU
FOR YOUR

ATTENTION!


