Inverse Limits of Burnside Rings for p-Groups

Masafumi Sugimura
Graduate School of Natural Science and Technology, Okayama University

Abstract

Let G be a finite group and H a subgroup of G. Also let V be an $\mathbb{R}[G]$-module and we denote by $V \bullet$ the one point compactification of V. Moreover, let \mathcal{F} be a set of subgroups of G and $\left\{f_{H}\right\}_{H \in \mathcal{F}}$ a family of H-map $f_{H}: V^{\bullet} \rightarrow V^{\bullet}$. Then we have a problem that does there exist a G-map $f_{G}: V^{\bullet} \rightarrow V^{\bullet}$ such that $f_{G} \sim_{H-h t} f_{H}(\forall H \leq G)$? We denote by $A(G)$ the Burnside ring of G. By evaluating $\operatorname{Coker}\left(\operatorname{res}_{\mathcal{F}}^{G}: A(G) \rightarrow \prod_{H \in \mathcal{F}} A(H)\right)$, we can know the difficulty of above problem. We denote by $L(G, \mathcal{F})$ the inverse limit of $A(G)$ and by $B(G, \mathcal{F})$ the image of $\operatorname{res}_{\mathcal{F}}^{G}$, then it is known that $\operatorname{Coker}\left(\operatorname{res}_{\mathcal{F}}^{G}\right)$ can be decomposed into the direct sum of $L(G, \mathcal{F}) / B(G, \mathcal{F})$ and $P(G, \mathcal{F}) / B(G, \mathcal{F})$. Moreover we define $Q(G, \mathcal{F})=L(G, \mathcal{F}) / B(G, \mathcal{F})$, Morimoto showed that $Q(G, \mathcal{F})$ is isomorphic to the product of $Q\left(G / G^{p}, \mathcal{F}_{G / G^{p}}\right)$ for p which devides k_{G}, where k_{G} is Oliver's number and G^{p} is the smallest normal subgroup of G with $\left|G / G^{p}\right| p$-power. Because G / G^{p} is p-group, it is important to calculate $Q(G, \mathcal{F})$ in case G is p-group. Hara and Morimoto calculated $Q(G, \mathcal{F})$ in the case of $G=A_{4}$ the alternating group of degree 4. They also calculated $Q(G, \mathcal{F})$ in case $G=C_{p}, C_{p} \times C_{p}, C_{p^{n}}$ and $C_{p} \times C_{q}$ as p-group, where p and q are distinct primes and n is a positive integer. However, little is known $Q(G, \mathcal{F})$ in the case of G more complicated. Let p be a prime and m and n positive integers. In this talk, we'll calculate $Q(G, \mathcal{F})$ in the case of $G=C_{p^{m}} \times C_{p^{n}}$ as application, where $C_{p^{m}}$ and $C_{p^{n}}$ are the cyclic groups of order p^{m} and p^{n} respectively. We denote by $\mathcal{S}(G)$ the set of all subgroups of G. We show mainly the following two results.

Theorem 1. $\mathcal{F}=\mathcal{S}(G) \backslash\{G\}$. If $G=C_{p^{m}} \times C_{p}$, then $Q(G, \mathcal{F}) \cong \mathbb{Z}_{p}^{\oplus p(m-1)+1}$.
Theorem 2. $\mathcal{F}=\mathcal{S}(G) \backslash\{G\}$. If $G=C_{p^{m}} \times C_{p^{2}}$, then $Q(G, \mathcal{F}) \cong \mathbb{Z}_{p}^{\oplus\left(p^{2}+1\right)(m-2)+p^{2}+p+2}$.

